Top 10 things to know about circles

1. A circle is the set of points in a plane that are equidistant from a given point \(O \) called the center.
2. The distance \(r \) from the center is called the radius, and the point \(O \) is called the center. Twice the radius is known as the diameter, \(d = 2r \).
3. The angle a circle subtends from its center is a full angle, equal to \(360^\circ \) or \(2\pi \) radians.
4. The perimeter \(C \) of a circle is called the circumference, and is given by \(C = 2\pi r = \pi d \).
5. The area of a circle is given by \(A = \pi r^2 \).
6. A central angle is an angle with endpoints \(A \) and \(C \) located on a circle's circumference and vertex \(O \) located at the circle's center.
7. For an inscribed angle and central angle with the same endpoints,

\[
\angle AOC = 2\angle ABC
\]

8. A tangent to a circle at a point \(p \) is perpendicular to the radius \(OP \).
9. The circumcircle is a triangle's circumscribed circle, i.e., the unique circle that passes through each of the triangle's three vertices. The center \(O \) of the circumcircle is called the circumcenter, and the circle's radius \(R \) is called the circumradius. A triangle's three perpendicular bisectors (i.e. the line perpendicular to the side from the midpoint of the side) meet at \(O \).
10. The incircle is the inscribed circle of a triangle, i.e., the unique circle that is tangent to each of the triangle's three sides. The center \(I \) of the incircle is called the incenter, and the radius \(r \) of the circle is called the inradius. The incenter is the point of concurrence of the triangle's angle bisectors.

About this document ...

This document was generated using the \texttt{LaTeX2HTML} translator Version 2002-2-1 (1.70)

The command line arguments were: \texttt{latex2html 10_things_circles.tex}

The translation was initiated by Steven Dunbar on 2006-02-02

Steven R. Dunbar

Department of Mathematics and Statistics
University of Nebraska-Lincoln
Lincoln, NE, 68588-0323 USA
email: sdnbar@math.unl.edu

\textit{Steve Dunbar's Home Page}